organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

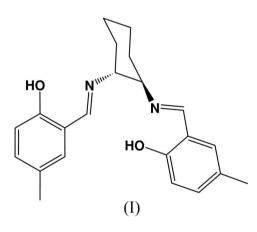
Ming-Hua Yang,* Yun-Fa Zheng and Guo-Bing Yan

Department of Chemistry, Lishui University, Lishui 323000, People's Republic of China

Correspondence e-mail: ymhxraylab@hotmail.com

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.002 Å R factor = 0.033 wR factor = 0.072 Data-to-parameter ratio = 11.4


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*R*,*R*)-4,4'-Dimethyl-2,2'-[cyclohexane-1,2-diyl-bis(nitrilomethylidyne)]diphenol

The title compound, $C_{22}H_{26}N_2O_2$, has been prepared by reaction of 1,2-cyclohexanediamine and 5-methyl-2-hydroxybenzaldehyde. The molecular structure is stabilized by intramolecular $O-H\cdots N$ hydrogen-bonding interactions. Received 16 December 2006 Accepted 23 January 2007

Comment

Chiral Schiff base compounds containing the 1,2-cyclohexanediamine scaffold are widely used in asymmetric catalytic synthesis (Canali & Sherrington, 1999). So far, few singlecrystal structures of this type of compound have been reported (Yang *et al.*, 2004). Our research is focused on asymmetric synthesis catalysed by chiral Shiff base-metal complexes (Yang *et al.*, 2005). In this context, we have synthesized the title chiral ligand, (I), and present here its crystal structure.

In (I), the cyclohexane ring displays a chair conformation, as indicated by the puckering parameters $q_2 = 0.032$ (2), $q_3 = 0.560$ (2), $\varphi_2 = 124$ (3)° and $Q_T = 0.561$ (2) (Cremer & Pople, 1975). The C8–C13 and C16–C21 benzene rings are oriented to form a dihedral angle of 28.11 (5)°. The molecular structure is stabilized by two intramolecular O–H···N hydrogen bonds (Table 1). The crystal packing is stabilized only by van der Waals interactions.

Experimental

A mixture of (1R,2R)-1,2-cyclohexanediamine (1.14 g, 10 mmol) and 5-methyl-2-hydroxybenzaldehyde (2.72 g, 20 mmol) in absolute ethanol (20 ml) was refluxed under nitrogen for about 5 h, yielding a yellow precipitate. This was separated by vacuum filtration and washed with ethanol (yield 90%, 3.14 g). Yellow single crystals of (I) suitable for X-ray analysis were grown from a mixture of CH₂Cl₂ and ethanol $(1:1 \nu/\nu)$ by slow evaporation of the solvent at room temperature over a period of about a week.

© 2007 International Union of Crystallography All rights reserved

Crystal data

 $\begin{array}{l} C_{22}H_{26}N_2O_2\\ M_r = 350.45\\ Orthorhombic, P2_12_12_1\\ a = 8.9896 \ (5) \ \text{\AA}\\ b = 10.3568 \ (6) \ \text{\AA}\\ c = 21.3397 \ (13) \ \text{\AA}\\ V = 1986.8 \ (2) \ \text{\AA}^3 \end{array}$

Data collection

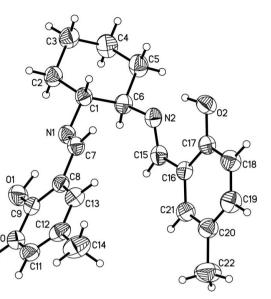
Bruker SMART APEX CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\rm min} = 0.98, T_{\rm max} = 0.98$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.072$ S = 1.022782 reflections 245 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1B \cdots N1 \\ O2 - H2D \cdots N2 \end{array}$	0.961 (17)	1.768 (18)	2.6060 (17)	143.7 (16)
	0.955 (18)	1.783 (19)	2.6065 (17)	142.6 (17)


The hydroxyl H atoms were located in a difference Fourier synthesis and refined with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm O})$. All other H atoms were positioned geometrically and refined using a riding-model approximation, with C–H = 0.93–0.96 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm methyl}\ {\rm C})$. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement. The absolute configuration was assigned from the known configuration of the synthetic precursor.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve

Z = 4 $D_x = 1.172 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 291 (2) K Block, yellow $0.32 \times 0.26 \times 0.24 \text{ mm}$

15010 measured reflections 2782 independent reflections 1636 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$ $\theta_{\text{max}} = 28.3^{\circ}$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.03P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.09 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{Å}^{-3}$

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. M203052) and the Research Foundation of Lishui University (No. FC06002) for financial support.

References

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

- Canali, L. & Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85-93.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Yang, M.-H., Li, Y.-Z., Zhu, C.-J., Pan, Y. & Liu, S.-H. (2004). Acta Cryst. E60, 02397–02398.
- Yang, M. H., Zhu, C. J., Yuan, F., Huang, Y. J. & Pan, Y. (2005). Org. Lett. 7, 1927–1930.